sábado, 25 de junio de 2011

Eras Geologic Of The Earth


Ordovician Period

The Ordovician Period started at a major extinction event called the Cambrian-Ordovician extinction events some time about 488.3 ± 1.7 Ma.[5] During the Ordovician the southern continents were collected into a single continent called Gondwana. Gondwana started the period in the equatorial latitudes and, as the period progressed, drifted toward the South Pole. Early in the Ordovician the continents Laurentia, Siberia and Baltica were still independent continents (since the break-up of the supercontinent Pannotia earlier), but Baltica began to move toward Laurentia later in the period, causing the Iapetus Ocean to shrink between them. Also, Avalonia broke free from Gondwana and began to head north toward Laurentia. The Rheic Ocean was formed as a result of this. By the end of the period, Gondwana had neared or approached the pole and was largely glaciated.
The Ordovician came to a close in a series of extinction events that, taken together, comprise the second-largest of the five major extinction events in Earth's history in terms of percentage of genera that went extinct. The only larger one was the Permian-Triassic extinction event. The extinctions occurred approximately 444-447 Ma [5] and mark the boundary between the Ordovician and the following Silurian Period.

The most-commonly accepted theory is that these events were triggered by the onset of an
ice age, in the Hirnantian faunal stage that ended the long, stable greenhouse conditions typical of the Ordovician. The ice age was probably not as long-lasting as once thought; study of oxygen isotopes in fossil brachiopods shows that it was probably no longer than 0.5 to 1.5 million years.[14] The event was preceded by a fall in atmospheric carbon dioxide (from 7000ppm to 4400ppm) which selectively affected the shallow seas where most organisms lived. As the southern supercontinent Gondwana drifted over the South Pole, ice caps formed on it. Evidence of these ice caps have been detected in Upper Ordovician rock strata of North Africa and then-adjacent northeastern South America, which were south-polar locations at the time.

Silurian Period

The Silurian is a major division of the geologic timescale that started about 443.7 ± 1.5 Ma.[5] During the Silurian, Gondwana continued a slow southward drift to high southern latitudes, but there is evidence that the Silurian ice caps were less extensive than those of the late Ordovician glaciation. The melting of ice caps and glaciers contributed to a rise in sea levels, recognizable from the fact that Silurian sediments overlie eroded Ordovician sediments, forming an unconformity. Other cratons and continent fragments drifted together near the equator, starting the formation of a second supercontinent known as Euramerica. The vast ocean of Panthalassa covered most of the northern hemisphere. Other minor oceans include Proto-Tethys, Paleo-Tethys, Rheic Ocean, a seaway of Iapetus Ocean (now in between Avalonia and Laurentia), and newly formed Ural Ocean.

Devonian Period

The Devonian spanned roughly from 416 to 359 Ma.[5] The period was a time of great tectonic activity, as Laurasia and Gondwanaland drew closer together. The continent Euramerica (or Laurussia) was created in the early Devonian by the collision of Laurentia and Baltica, which rotated into the natural dry zone along the Tropic of Capricorn. In these near-deserts, the Old Red Sandstone sedimentary beds formed, made red by the oxidized iron (hematite) characteristic of drought conditions. Near the equator Pangaea began to consolidate from the plates containing North America and Europe, further raising the northern Appalachian Mountains and forming the Caledonian Mountains in Great Britain and Scandinavia. The southern continents remained tied together in the supercontinent of Gondwana. The remainder of modern Eurasia lay in the Northern Hemisphere. Sea levels were high worldwide, and much of the land lay submerged under shallow seas. The deep, enormous Panthalassa (the "universal ocean") covered the rest of the planet. Other minor oceans were Paleo-Tethys, Proto-Tethys, Rheic Ocean and Ural Ocean (which was closed during the collision with Siberia and Baltica).

No hay comentarios:

Publicar un comentario